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In a note by Klamkin and Newman (1], it was shown that

n n
) =« (144)) 2 (a+1)® » A
f=1 " {wl
[ § . n
(2) =« (l-Ai) 2 (n-1)" g0
i=1 =]

n
where Ai 20 (1=1,2,...,n) and ¢ ‘1 = 1. Under the same conditions it
i=1
was shown by Klamkin in [2] that

n n

" (lﬂi) % (I-Ai)
3 1e] > =1

(n+1)® (n=1)"

wvith equality if Ai - % « In [2] the author refers to a similar inequality

to (2) Ky Fan [[4], p. 363) under tighter conditions on A, but more relaxed
condition on tAi, namsiy,

n ” {n - tAi} n 1
4) v (1-A) 2 " A ' for 0 <A, £ 5,
ey oS TA, 1§ 177

Inequalities (1), (2) and (3) are proved by the authors as extensions of
the Weierstrass product inequalities [see [1]].
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The main purpose of this note 'is to show that the 1nequaiit1u Qq),
(2), (3) and (4) can be obtained by a uniform approach using the powerful
tools of majorization and Schur-functions. Majorization (defined in
Section 2) is a partial ordering in Rn.' the n-dimensional Euclidean space.
A Schur-function is a function that is monotone with respect to this
partial ordering. In Section 2 we show that inequalities (1), (2), (3) and.
(4) follow immediately by observing that certain functions are Schur-f.unctions,

thus providing a unifying and more transparent proof of these inequalities.

Section 2. We now give the standard definitions and results of majorization

and Schur-functions needed for proving inequalities (1), (2), (3) and (4).
Given a vector x = (xl,...,xn), let X(1) 2 x[n Soaep 2 X[n] denote
a decreasing rearrangement of XyseeoX .

Definition 1. A vector ¥ is said to majorize a vector x' if

3 k|
| 2 X 2 : ‘. » 1-1.00.,“-1.
| oq THITTE

n n
and : '
z
g W17 0 Tl
- L}
» in symbols x 2 x .

Definition 2. A function £ :nn + R is said to be a Schur-convex (Schur-concave)

i nd

m
function if x 2 5' implies that f (5) 2(s) ¢ (5'). Punctions which are either
.!s Schur-convex or Schur-concave are called Schur-functions.
4 ; ;
3 1: Theorem 1. Let ¢: R + R be a log-convex (log-concave) real-valued function.
b /. ‘A'. ] n
: Let g: R_+ R defined by g(x) = « 0(:1), vhere x = (xl,...,x ). Then
w0 by 1=l i %

g is Schur-convex (Schur-concave).

Theoren 1 follows immediately from a theorem by Ostrowski, (1952) [3].




We are now ready to prove inequalities (1), (2), (3) and (4). Let

n
20, L A
o) 1

Now let 01(8 = L:—‘- » where x 2 0. Then Ol(x) is log-convex. Therefore

- - -1— -];
e (Al....,An). wvhere A 1. Cleatrly A 2 (n""’n)'

i

n n (1+A1) o
by Th. 1, = 01(::1) 1s Schur-convex. Hence 7 —¢ 2 (n+l)" which
is]l i=]1 i

establishes (1).

Nowleth(x)--l-?-.OSx<1 Then ¢,(x) is log-convex and so by
n n (14+A,) n
Theorem 1, K ¢,(x,) is Schur-convex. It then follows that ¥ -(1—1-*’- > -(!'-9; y
i=1 i=1  § (n-1)

vhich establishes (3). Equality holds if A -% since Qz(x) is strictly

1
log convex.
Now let 03(1) = 1—;’- s then 03(3) is log-convex for 0 < x s%— and log-concave

for-]zé $x <1, Also let A '(Al”""n)' vhereOsAis-lz-'. Clearly

m A !:A nl-A ltAlnn n-tAn
2

A ...t ). so that w (—¢ ) 2 [—7-] [-Ti—-] » establishing (4).

- 1=1

Finally, let 51 - ((n-l)Al,...,(n-l)A n) and let 52 = (1-A1.....1-An) where

m
A:I. 20, ui = 1, It can be easily verified that Al 2 Az. By Theorem 1,

g(x) = = x, is a Schur-concave function. It then follows that

n n n
(n-l) L Ai - ¥ (n-l)A S = (I-A ),
{=1 i=1 i=1

proving inequality (2).
It is apparent that many additional inequalities of the Weierstrass product
type can be formulated and proved by choosing the appropriate log-concave function,




forming products to obtain a Schur-convex fumction, and then using Definition

2 above.
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